

Targeted therapeutic approaches for high risk myeloid malignancies

Olatoyosi Odenike, MD
Associate Professor of Medicine
Director, Leukemia Program
The University of Chicago Medicine

Disclosures Olatoyosi Odenike, MD

I disclose the following financial relationship(s):

- Celegene, Advisory Board or Panel, Grants/Research Support
- AbbVie, Advisory Board or Panel, Grants/Research Support
- Impact Biomedicines, Advisory Board or Panel
- Agios, Grants/Research Support
- AstraZeneca, Grants/Research Support
- CTI-Biopharma, Grants/Research Support
- Incyte, Grants/Research Support
- NS-Pharma, Grants/Research Support
- Oncotherapy Sciences, Grants/Research Support
- Membership on the ABIM Med Onc Governance Board
- Membership on the ABIM Med Onc Exam Committee

High Risk Myeloid Malignancies

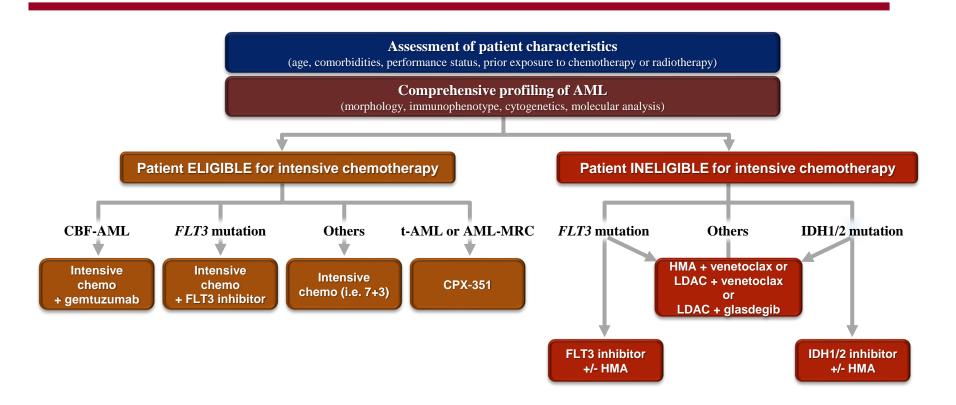
Acute Myeloid Leukemia
Poor risk clinical, molecular or cytogenetic
features
Relapsed refractory

Myelodysplastic syndromes Higher risk disease

Propensity to evolve to AML

Myeloproliferative neoplasms Advanced Myelofibrosis

Objectives


• Highlight significant ongoing areas of unmet need in high risk myeloid neoplasms

 Review promising therapeutic approaches that span the spectrum of myeloid malignancies

FDA Approvals for AML since 2017

- ■In 2017, 4 new drugs were approved:
 - •Midostaurin (newly-diagnosed FLT3-mutant AML)
 - •CPX-351 (VyxeosTM) (therapy-related AML, or AML with MDS-related changes)
 - •Gemtuzumab ozogamicin (CD33+AML)
 - •Enasidenib (IDH2mutant Rel/Ref AML)
- **20** July 2018: <u>Ivosidenib</u> (IDH1mut Rel/Ref AML)
- **■21 Nov 2018:** Glasdegib & Venetoclax (newly dx AML ≥75 or unfit)
- ■28 Nov 2018: Gilteritinib (FLT3mut Rel/Ref AML)
- ■21 Dec 2018: Tagraxofusp (SL-401) for BPDCN

Evolving treatment paradigm for Newly Dx AML

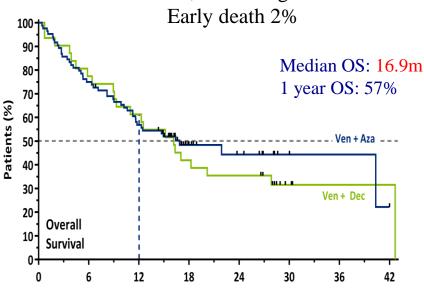
Targeting the leukemia stem cell

BCL2 inhibition

Background: Experience with AZA alone and AZA + venetoclax in older adults with AML

AZA

CR/CRi 28%


N=241, median age 75 Early death 7.5% 0.9 0.8 Median OS: 10.4m Azacitidine 1 year OS: 46.5% Survival Probability CCR 10.4 months 0.6 0.4 6.5 months 0.3 0.2 34.2% 0.1 12 20 32 36 Time from Randomization (months)

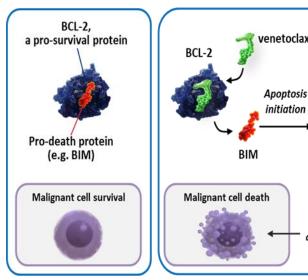
Dombret H et al, Blood 2015

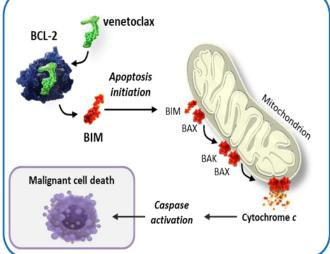
AZA+VEN

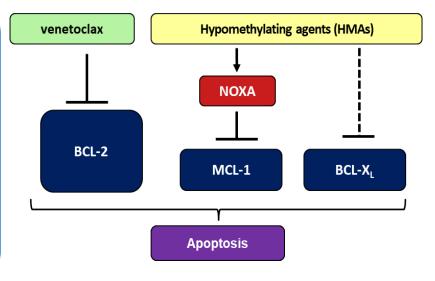
CR/CRi 71%

N=84, median age 75 Early death 2%

DiNardo CD et al, Lancet Oncol 2018

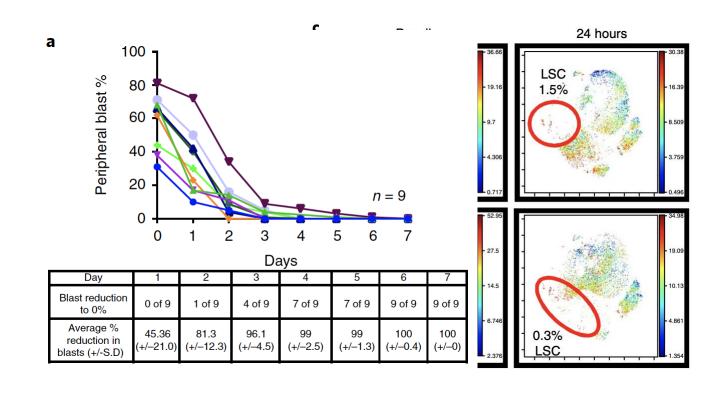

Background: Expectations with AZA alone and AZA + venetoclax


Cohort	N	Composite Response Rate, (CR+CRi) n (%)	Overall Response Rate (CR+CRi+PR) n (%)	Median Duration of CR+CRi (95% CI)	Median OS (95% CI)
All patients	145	97 (67)	99 (68)	11.3 (8.9-NR)	17.5 (12.3-NR
VEN 400 mg + HMA	60	44 (73)	44 (73)	12.5 (7.8-NR)	NR (11.0-NR)
VEN 800 mg + HMA	74	48 (65)	50 (68)	11.0 (6.5-12.9)	17.5 (10.3-NF
0.4 6.5 months 0.2 0.1 0.1 0 0 4 8 12	16 20	24 28 32 36 Amization (months)	Patients at risk All patients 145 133 1. VEN 400 mg 60 56 5 VEN 800 mg 74 69 6	4 6 8 10 12 14 16 18 20 22 24 26 Months 24 115 102 89 73 53 25 16 15 13 12 7 52 48 45 38 30 20 8 3 3 3 3 3 54 59 50 44 38 29 13 10 10 10 9 4 8 8 7 7 5 4 4 3 2	4 2 3 2

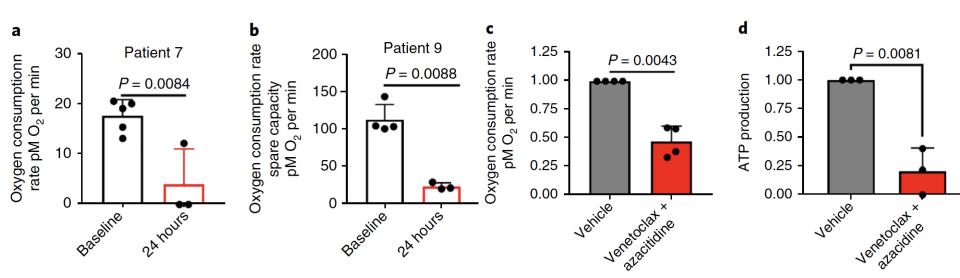

Dombret H et al, Blood 2015

DiNardo CD et al, Blood 2019

Venetoclax is a potent and selective BCL2 inhibitor

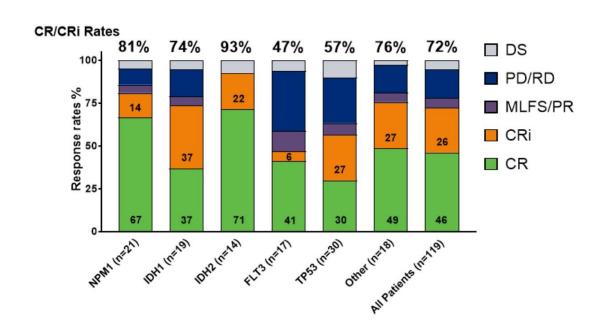

BCL-2 overexpression allows cancer cells to evade apoptosis by sequestering pro-apoptotic proteins ¹⁻³

Venetoclax binds selectively to BCL-2, freeing pro-apoptotic proteins that initiate programmed cell death (apoptosis)⁴⁻⁶


Azacitidine and decitabine indirectly increase sensitivity to BCL-2 inhibition in AML cells by modifying the relative levels of BCL-2 family members^{2,3}

^{1.} Leverson JD, et al. Sci Transl Med 2015; 7:279ra40. 2. Czabotar, et al. Nature Reviews 2014;15:49-63. 3. Plati J, Bucur O, Khosravi-Far R. Integr Biol (Camb) 2011;3:279–296. 4. Certo M, et al. Cancer Cell. 2006;9(5):351-65. 5. Souers AJ, et al. Nat Med. 2013;19(2):202-8. 6. Del Gaizo Moore V et al. J Clin Invest. 2007;117(1):112-21.

Azacitidine + Venetoclax Targets LSCs in Vivo


Rapid Drop in OXPHOS and ATP

Azacitidine+venetoclax in AML: Response according to mutational profile

Subgroup	CR + CRi, n (%)	
All patients	97 (67)	
Cytogenetic risk Intermediate Poor	55 (74) 42 (60)	
Age ≥75 y <75 y	40 (65) 57 (69)	
AML De novo Secondary	73 (67) 24 (67)	

DiNardo et al, Blood 2019

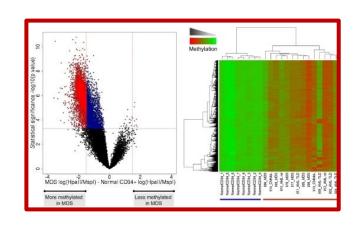
Other venetoclax based strategies being investigated in AML

- 10 day decitabine+venetoclax
 - TP53 mutated subset
- Enasidenib+venetoclax
 - IDH2 mutated subset
- Venetoclax+CDK inhibition
- Venetoclax+ intensive chemotherapy
 - FLAG-IDA+ven
 - 7+3+venetoclax
- Venetoclax incorporation into transplant conditioning regimen

Higher Risk MDS

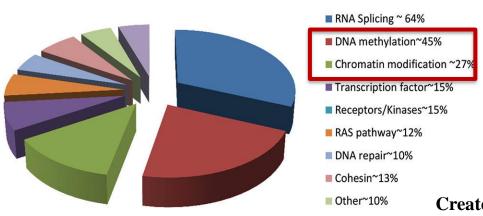
Stratification based on IPSS/IPSS-R

	Score	Risk Group	Median Survival in years
\$S 816	0	Low	5.7
	0.5-1.0	Intermediate-1	3.5
	1.5-2.0	Intermediate-2	1.2
	\geq 2.5	High	0.4
	Points	Risk Score	Median survival


Score=>1.5: Higher risk MDS

	Points	Risk Score	Median survival in years
S-R	≤ 1.5	Very Low	8.8
PS.	> 1.5-3	Low	5.3
	>3-4.5	Intermediate	3.0
	>4.5-6	High	1.6
	>6	Very high	0.8

*Score=>3.5: Higher risk MDS


Adapted from: Greenberg P, Blood 1997, 89:2079, Greenberg PL, Blood 2012, 30:820, *Pfeilstocker M, Blood 2016, 128:902-910

Rationale for targeting the epigenome in MDS?

 MDS is associated with a hypermethylator phenotype

Mutational Spectrum of MDS

■ No mutation~10%

Mutations in epigenetic modifiers occur frequently in MDS

Figueroa, Blood, 2009; 114:3448

Created from data in Haferlach T, Leukemia; 2014, 28: 241

Selected Phase II/III Hypomethylating Agent Trials in MDS

Agent	*N	Overall Response Rate (CR/PR/HI)	Duration of response (months)	Overall Survival (months)	Author
Azacitidine	99	47%	13.1	20	Silverman
Azacitidine	179	49%	13.6	24.5	Fenaux
Decitabine	89	30%	10.3	14	Kantarjian
Decitabine	99	30%	10	19.4	Steensma
Azacitidine	75	46%	12	18	Prebet
Azacitidine	92	38%	10	15	Sekeres Silverman, JCO,2002, 2006 Fenaux, Lancet Oncol, 2009 Kantarijan, Cancar, 2006

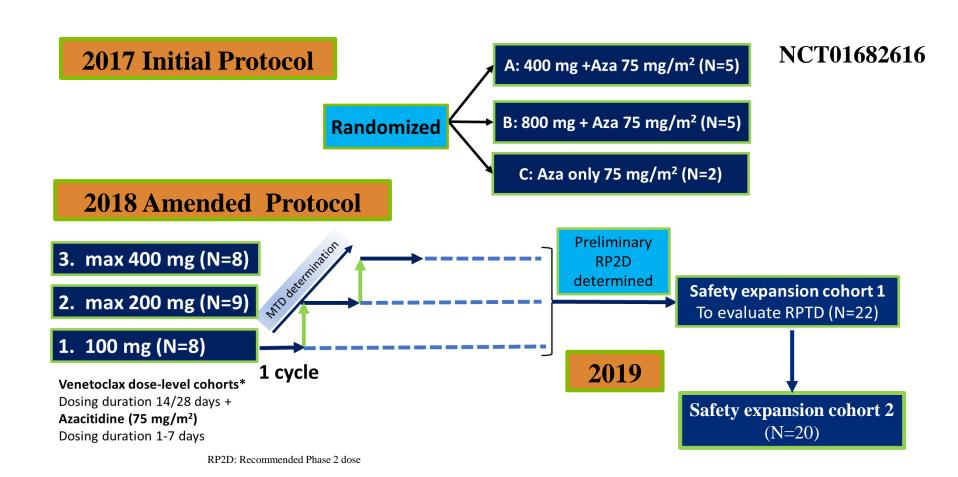
CR rate in the 10-20% range across studies;

*N=number on hypomethylating agent arm of trial

Fenaux, Lancet Oncol, 2009 Kantarjian, Cancer, 2006 Steensma, JCO, 2009 Prebet, JCO, 2014 Sekeres, JCO, 2017

Azacitidine+venetoclax in MDS

A Phase 1b Study Evaluating the Safety and Efficacy of Venetoclax in Combination with Azacitidine in Treatment-Naïve Patients with Higher-Risk Myelodysplastic Syndrome


Andrew H Wei¹, Jacqueline S Garcia², Uma Borate³, Chun Yew Fong⁴, Maria R Baer⁵, Florian Nolte⁶, Pierre Peterlin⁻, Joseph Jurcic⁶, Guillermo Garcia-Manero⁶, Wan-Jen Hong¹⁰, Uwe Platzbecker¹¹, Olatoyosi Odenike¹², Ilona Cunningham¹³, Martin Dunbar¹⁴, Ying Zhou¹⁴, Jason Harb¹⁴, Poonam Tanwani¹⁴, Sathej Gopalakrishnan¹⁵, Johannes Wolff¹⁴, Meagan Jacoby¹⁶

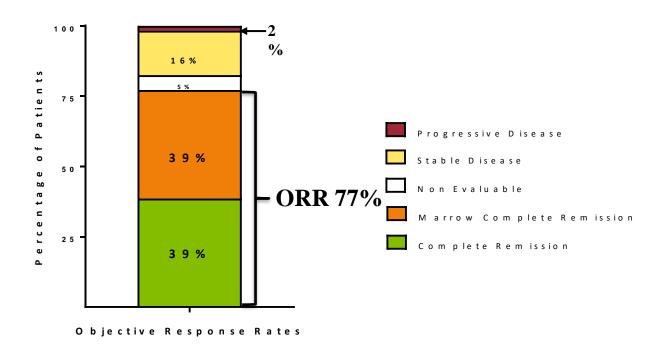
¹Department of Haematology, Alfred Hospital and Monash University, Melbourne, Australia, ²Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA, ³Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA ⁴Olivia Newton John Cancer Research Institute, Austin Health, Melbourne, VIC, Australia, ⁵Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA, ⁶Department of Hematology and Oncology, Charité University Hospital, Campus Benjamin Franklin, Berlin, Germany, ⁷Hematology Department, Nantes University Hospital, Nantes, France, ⁸Myelodysplastic Syndromes Center, Columbia University Medical Center, Columbia University, New York, NY, USA, ⁹Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, ¹⁰Genentech, South San Francisco, CA, ¹¹Medical Clinic and Policlinic 1, Hematology and Cellular therapy, University Hospital Leipzig, Germany, ¹²University of Chicago Medicine and Comprehensive Cancer Center, Chicago, IL, ¹³Concord Clinical School, University of Sydney, Sydney, Australia

¹⁴AbbVie Inc, North Chicago, IL, USA, ¹⁵AbbVie Deutschland GmbH & Co KG, Germany, ¹⁶Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA

American Society of Hematology (ASH) – 61th Annual Meeting Orlando, FL, USA ● December 9, 2018

Study Design, Dosing, and Enrollment

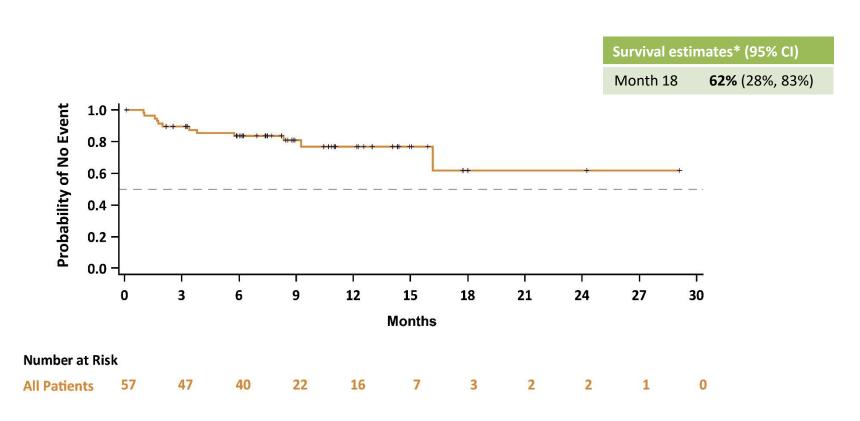
Baseline Characteristics


Characteristics	N=57
Male, n (%)	14 (25)
Age	
Median (range)	71 (26-85)
≥60 years, n (%)	51 (90)
ECOG Performance Score, n (%)	
0	22 (39)
1	29 (51)
2	6 (11)
Bone marrow blast, n (%)	
<5%	3 (5)
≥5% to <10%	15 (26)
≥10% to <20%	37 (65)
≥20%	2 (4)#
IPSS-R score, median (range)	7 (4-10)

Characteristics	N=57
Cytogenetic risks n (%)	
Good	23 (40)
Intermediate	10 (18)
Poor	24 (42)
Baseline cytopenia (Grade ≥3), n (%)	
Neutropenia ^a	32 (56)
Thrombocytopenia ^b	19 (33)
Leukopenia ^c	23 (40)
Anemia ^d	7 (12)

- a. Includes neutrophil count decreased
- b. Includes platelet count decreased
- c. Includes white blood cell count decreased
- d. Includes hemoglobin count decreased

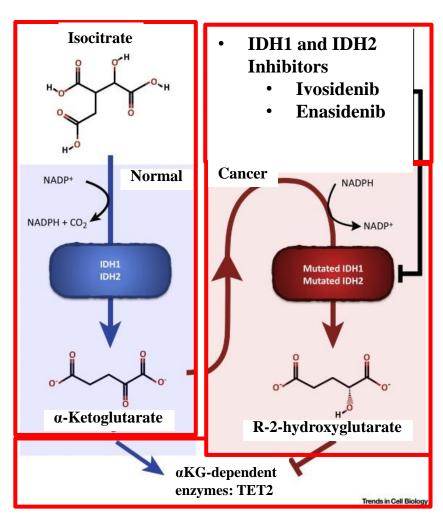
ECOG: Eastern Cooperative Oncology Group, IPSS: International Prognostic Scoring System *Patients recruited under 2017 Initial Protocol


Response Rates (IWG 2006)

Excludes patients of arm C (Aza only); ORR includes CR+mCR+ PR; # of patients with PR=0

Data Cut-off: 21 AUG 2019

Overall Survival

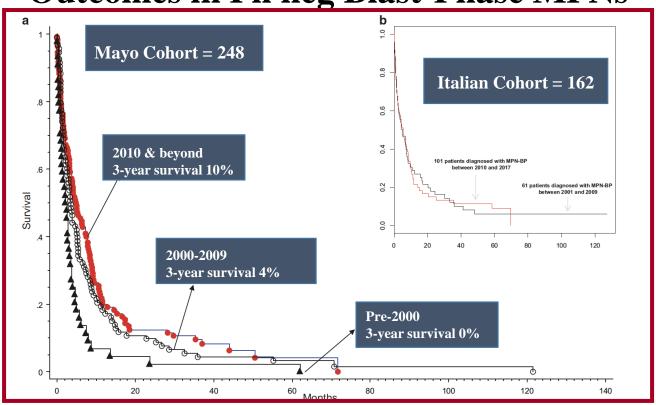

^{*} Median Overall Survival time not reached; Includes all patients that received Ven+Aza (excluding arm C) N=57

Summary-azacitidine+venetoclax in MDS

- The recommended dose of Venetoclax is 400 mg for days 1-14 of a 28-day cycle when combined with azacitidine (75mg/m², days 1-7)
- The emerging safety profile indicates that the combination of Venetoclax and Azacitidine is manageable
- The observed CR rate is 39% with Venetoclax in combination with Azacitidine, ORR>70%
- Overall survival rates are encouraging
 - Follow up is still short
- Impact of baseline mutations on response?

IDH inhibition

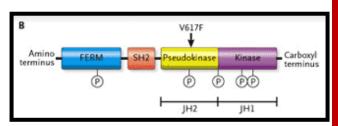
Targeting mutant IDH1/2


Adapted from: Gagne et al, Trends in Cell Biology, 27; 738-52

Mutations in IDH1/2

- Lead to elevated 2HG and inhibition of αKG enzymes and epigenetic dysregulation
- Occur in 6% of MDS, incidence rises with leukemic transformation ¹
- Occur in 20% of patients with MPN-BP
- IDH1/2 inhibitors active in IDH mutant AML
- Preliminary evidence of activity in MDS
 - 6 of 15 patients (1CR, 1PR, 4HI) responded in an early phase trial ³
- Combination trials with HMA or chemo ongoing in treatment naïve setting in AML.

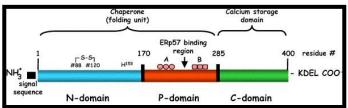
1.Dinardo CD, Leukemia, 2016; 30: 980 2.Stein EM, Blood 2017 E-pub 3.Stein EM, Blood, 2016, ASH annual meeting abstracts # 343 4. Dinardo CD, ASH, 2019, abstract # 343


Outcomes in Ph neg Blast-Phase MPNs

Tefferi et al. Leukemia 2018

Advances in MPN Pathogenesis

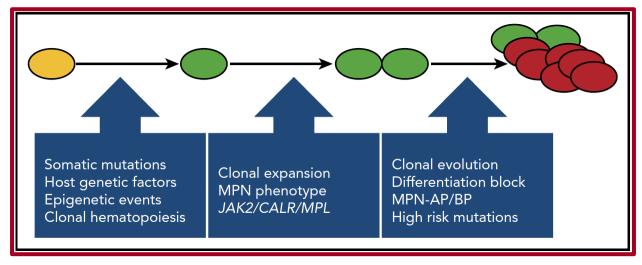
JAK2V617F mutation



Polycythemia Vera (95%) Essential Thrombocythemia (50%-60%) Myelofibrosis (50%-60%)

Mutation confers constitutive activation of JAK/STAT signaling

James C et al, Nature 2005, 434:1144-8 Kralovics R et al, NEJM 2005, 352:1779-90

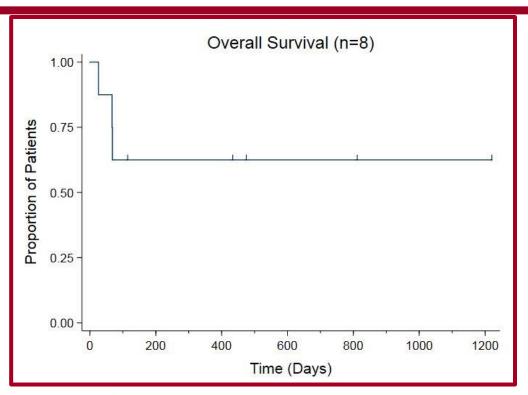

Calreticulin mutation

Essential thrombocythemia (20-30%) Myelofibrosis (30-40%)

CALR mutations result in activated JAK/STAT signaling

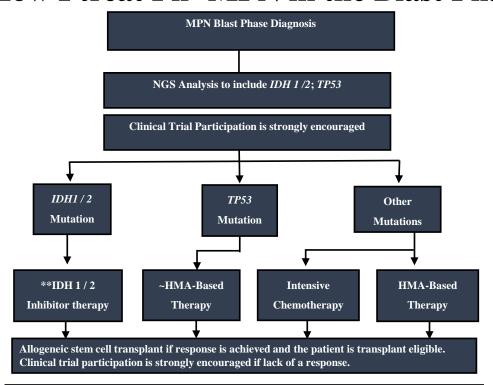
Klampfl T et al, NEJM 2013, 369:2379-90 Nangalia J et al, NEJM 2013, 369:2391-405

An Evolutionary pathway to MPN-BP



University of Chicago series: IDH mutated MPN-BP treated with enasidenib or ivosidenib

Response by 2003 AML IWG Criteria	All Patients (n=15)	MPN-BP Patients (n=8)	
CR	1 (7%)	1 (12.5%)	
PR	1 (7%)	1 (12.5%)	
MLFS	2 (14%)	1 (12.5%)	
TF	11 (53%)	5 (62.5%)	
ORR (CR+PR+MLFS)	4 (27%)	3 (37.5%)	
Response by 2012 MPN-BP	MPN-BP Patients		
Criteria	(n=8)		
CCR	0 (0%)		
ALR-C	2 (25%)		
ALR-P	4 (50%)		
SD	1 (12.5%)		
PD	1 (12.5%)		
ORR (CCR+ALR-C+ALR-P)	6 (75%)		


CR = complete remission; PR = partial remission; MLFS = morphologic leukemia-free state; TF = treatment failure; ORR = overall response rate; SD = stable disease; PD = progressive disease; CCR = complete resolution of acute leukemia and MPN component with normal karyotype; ALR-C = acute leukemia response-complete; ALR-P = acute leukemia response-partial

Survival outcomes: University of Chicago series IDH2 mutated MPN-BP treated with enasidenib

How I treat Ph -MPN in the Blast Phase

** The potential promise of IDH1/2 inhibitor based therapy is not yet validated in MPN-BP and is recommended in the context of clinical trial participation; ~HMA based therapy has not been validated as superior to intensive chemotherapy (ICT) in TP53 mutated cases and the choice of one over the other must be individualized.

Other novel agents in myeloid neoplasms:

- Epigenetic therapies
 - BET inhibition
 - LSD1 inhibition
 - DNMT inhibition
 - ASTX727, CC-486
- TP53 modulators
 - APR-246
- Checkpoint inhibitors
 - Anti-CD47
 - Anti-TIM3
- TGFbeta inhibitors
 - Luspatercept
- Non JAK kinase inhibitors

Conclusions

- Comprehensive genomic profiling is an integral aspect of the diagnostic work up of patients with myeloid malignancies
- Several promising targeted therapeutics are in development which span the spectrum of myeloid malignancies
- Potential impact on the natural history of these malignancies is an evolving story