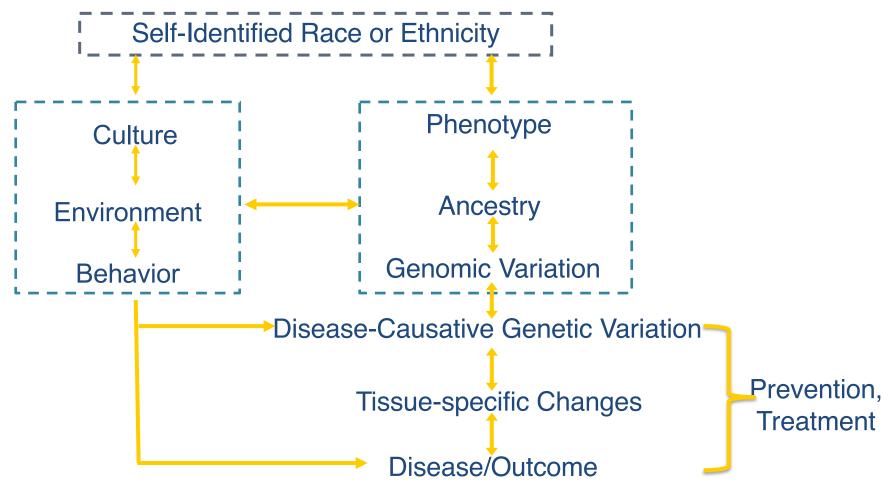
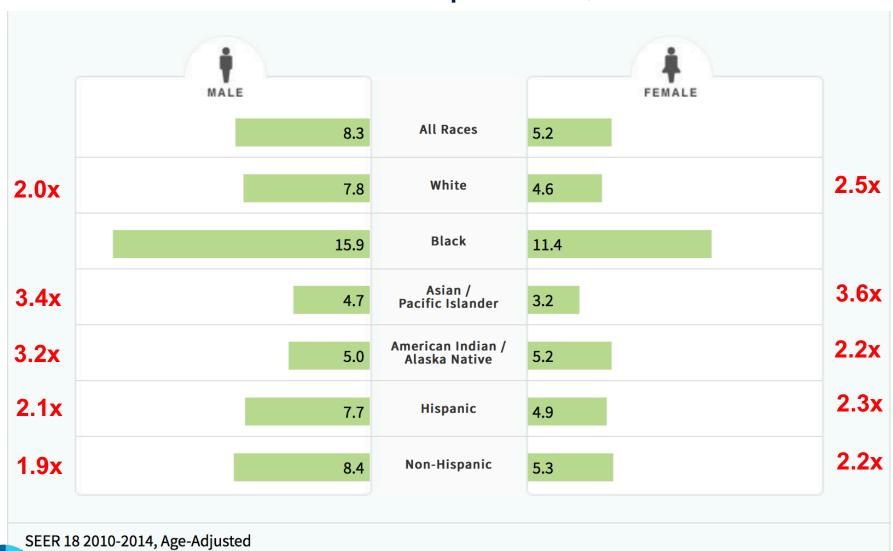
Disparities in Myeloma and Its Precursors in African Americans

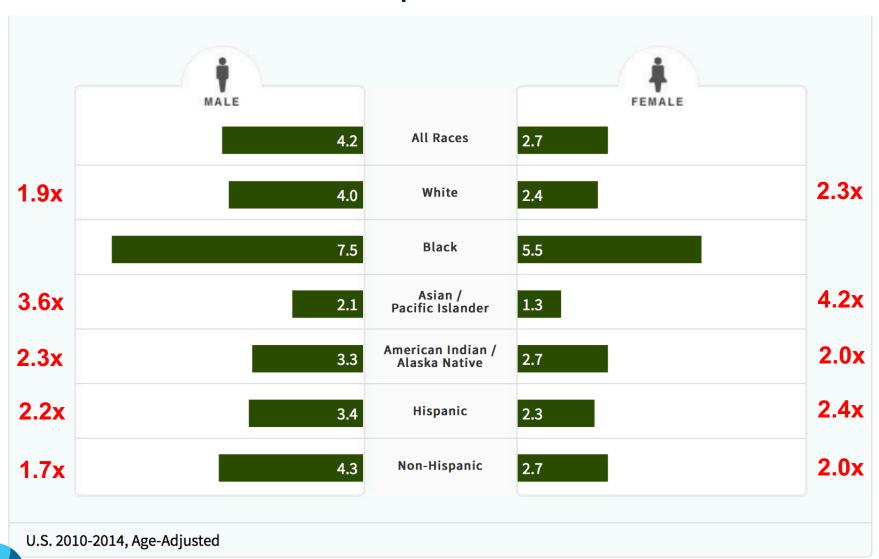
Timothy R. Rebbeck, PhD



Disclosures

None

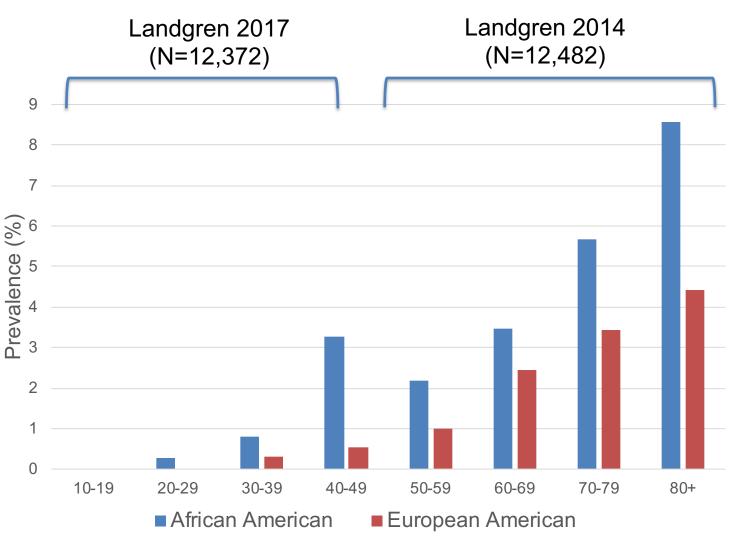

Disparities Framework



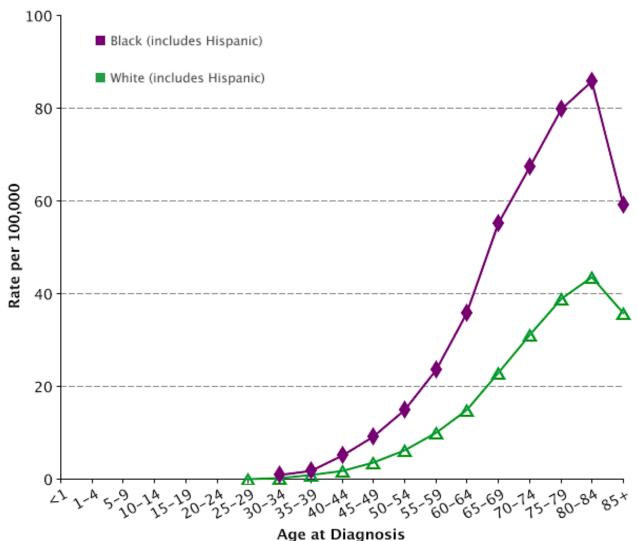
Adapted from: Rebbeck and Sankar CEBP 2005, Rebbeck et al. JCO 2006

Number of New Cases per 100,000 Persons

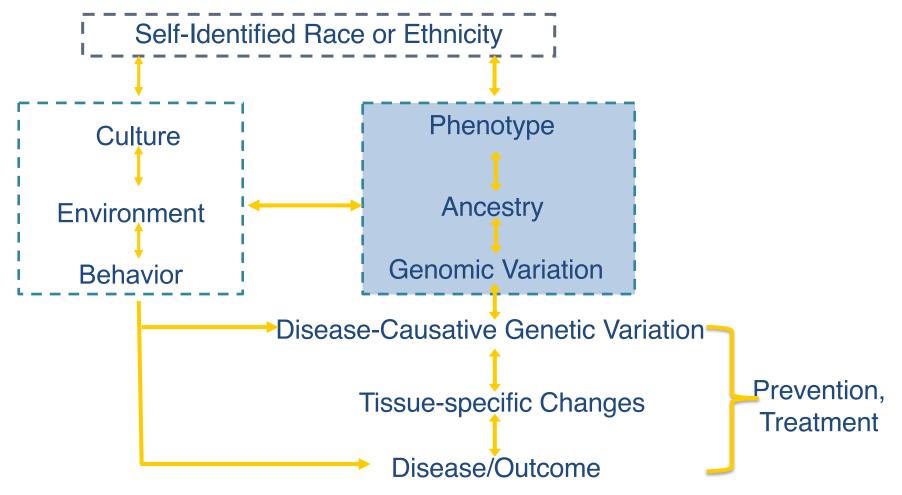
Number of Deaths per 100,000 Persons



Disparities in MGUS Prevalence


All Myeloma Patients have prior MGUS

(Landgren et al., Blood, 2009; Weiss et al; Blood 2009)



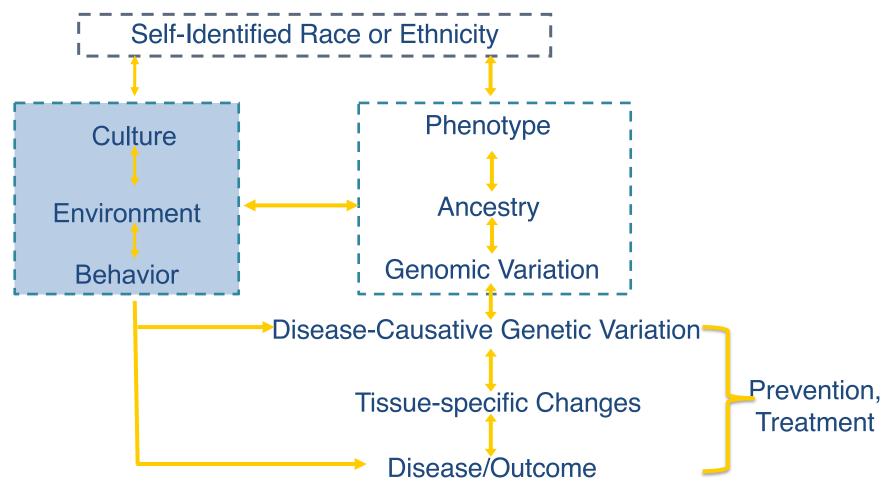
Earlier Age at MM Diagnosis in Blacks

Disparities Framework

Adapted from: Rebbeck and Sankar CEBP 2005, Rebbeck et al. JCO 2006

Familial Myeloma

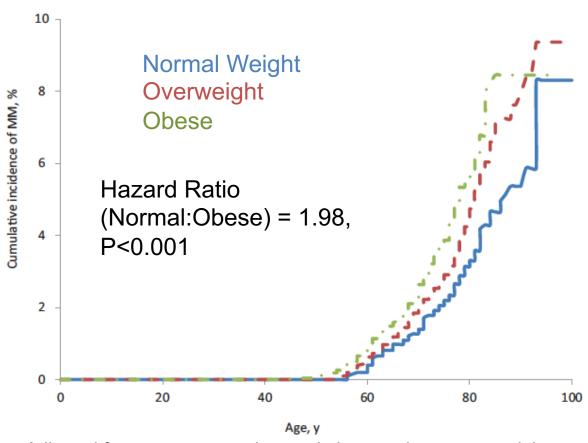
Trait		Citations
Familial Relative Risk of MM	2.5-fold excess risk	Altieri et al., 2006 Landgren et al. 2006 Hemminki et al. 2004 Frank et al. 2015
Proportion of MM that is familial	2.4%	Frank et al. 2016
Reported clustering of MM with other tumors	Tumor sites: colorectal*, breast and prostate cancers, non-thyroid endocrine tumors, leukemia (*a syndrome?)	Frank et al. 2016



Association of MM Family History with MM Risk

	European American	African American
Van Valkenburg et al. 2016	2.0 (0.83-5.04)	20.9 (2.59-168)
Brown et al. 1999	1.5 (0.3-6.4)	17.4 (2.4-348)

Disparities Framework



Adapted from: Rebbeck and Sankar CEBP 2005, Rebbeck et al. JCO 2006

Obesity as a MM Risk Factor:

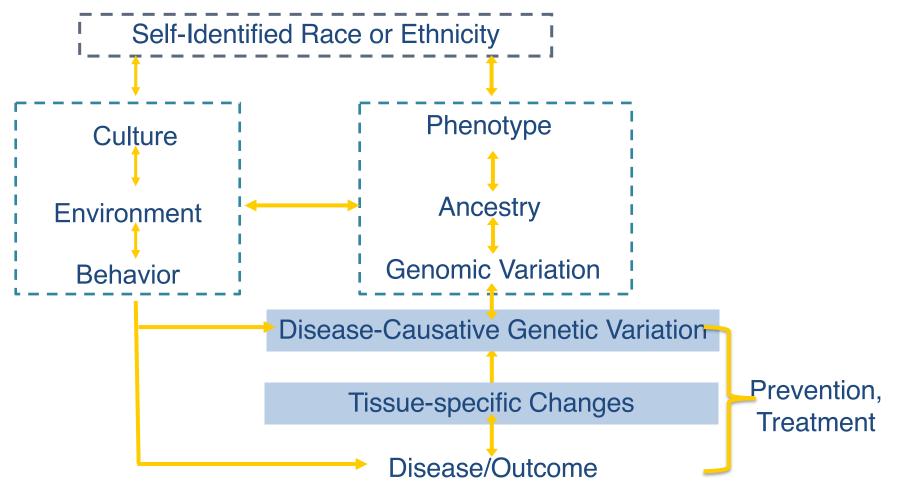
Cumulative Incidence of MM in 7,878 US Veterans with MGUS, 1999-2009

Adjusted for age, race, gender, marital status, income, creatinine, diabetes, and comorbidities

Selected MGUS Risk Factor Exposures

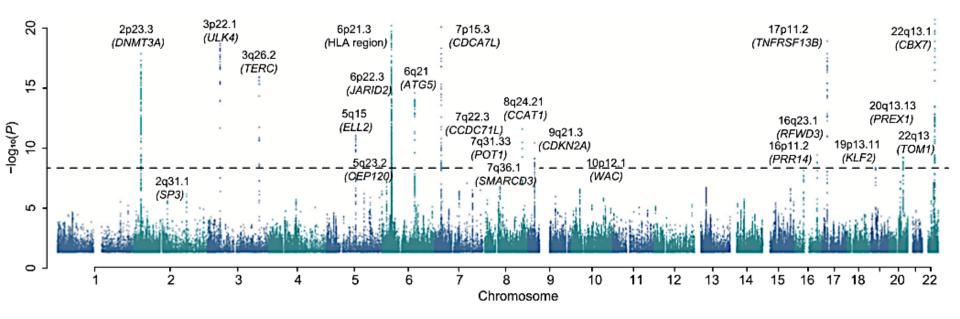
Exposure	Association	References
World Trade Center 9/11 Exposed vs. Olmstead County, MN	1.8-fold higher	Landgren et al. JAMA Oncology 2018
Pesticide exposed vs. Olmstead County, MN	1.9-fold higher	Landgren et al., <i>Blood</i> 2009
Agent Orange Exposed vs. Unexposed	7.1% vs. 3.1% (OR=2.4, 95%CI 1.3-4.4)	Landgren et al. JAMA Oncology 2015

Limitation: Associations largely unreported in African Americans


Selected Myeloma Risk Factor Exposures

Exposure	Association	References
World Trade Center 9/11 Exposed vs. General Population	7.63% in 9/11 Firefighters vs. 1.8% in Olmstead County	Landgren et al. <i>JAMA</i> Oncology 2018
Female Agricultural Workers	HR=2.25 (95%CI 1.16-4.37)	Kachuri et al. <i>BMC</i> Cancer 2017
Chernobyl Accident Clean-Up Workers	SIR=1.6 (96%CI: 1.01-2.2)	Bazyka et al. <i>Prob Rad Med Radiob</i> 2013
Hiroshima & Nagasaki Atomic Bomb Blast Survivors	No excess risk	Hsu et al., Radiation Research, 2013

Limitation: Associations largely unreported in African Americans


Disparities Framework

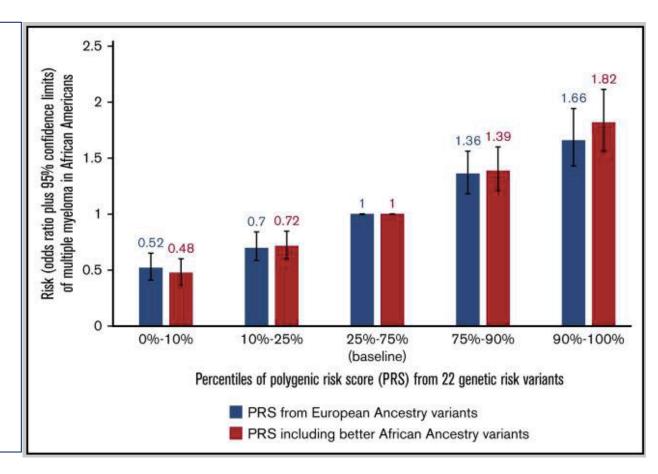
Adapted from: Rebbeck and Sankar CEBP 2005, Rebbeck et al. JCO 2006

Genetic Associations

- 24 GWAS Loci Include: Telomere Regulation, Tumor Suppressor Genes, Oncogenes, Micro-RNAs, Linc RNAs, Carcinogen Metabolism Genes, MYC regulation, and others
- These explain about 16% of heritability.
- Common variants are enriched in familial myeloma
- Few rare loss of function variants have been observed (e.g., CDKN2A)

Genome-Wide Association by Race

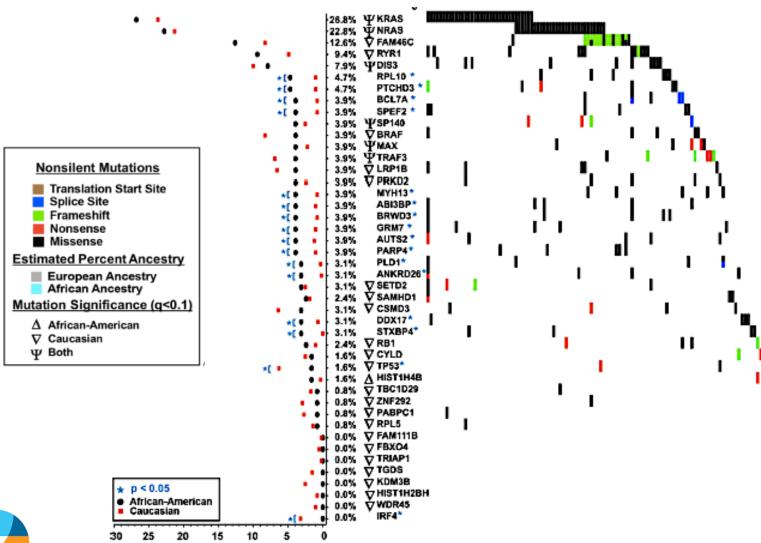
1,318 MM and 1,480 controls of European ancestry 1,305 MM and 7,078 controls of African ancestry


Index SNPs ^a /Most significantly associated SNPs ^b					Association in European ancestry			Association in African ancestry					
SNP	BP	Risk/Ref	Freq	OR	P	Freq	OR	P	Power	Freq	OR	P	Power
2p23.3													
rs6746082°	25659244	A/C	0.76	1.29	1.22×10^{-7}	0.79	1.15	5.17×10^{-2}	0.96	0.55	1.04	3.77×10^{-1}	0.80
rs6761076 ^b	25607758	T/C				0.81	1.23	7.23×10^{-3}		0.68	1.09	8.33×10^{-2}	
2q12.3													
rs12614346a	107642482	A/G	0.33	1.39	1.70×10^{-5}	0.31	1.00	9.45×10^{-1}	0.99	0.16	1.00	9.81×10^{-1}	0.99
rs13416655 ^b	107621925	C/T				0.50	1.01	8.03×10^{-1}		0.39	1.10	4.90×10^{-2}	
3p22.1													
rs1052501°	41925398	G/A	0.20	1.32	7.47×10^{-9}	0.22	1.23	4.42×10^{-3}	0.99	0.63	1.06	2.21×10^{-1}	0.99
rs143531651 ^b	41816589	G/C				0.17	1.25	4.91×10^{-3}		0.11	1.27	1.37×10^{-3}	
3q26.2													
rs10936599a	169492101	G/A	0.75	1.26	1.74×10^{-13}	0.79	1.12	8.41×10^{-2}	0.92	0.93	1.08	3.84×10^{-1}	0.73
rs9811216b	169487501	T/C				0.74	1.11	1.10×10^{-1}		0.70	1.09	8.46×10^{-2}	
6p21.33 ^d													
rs2285803°	31107258	A/G	0.28	1.19	1.18×10^{-10}	0.29	1.11	1.27×10^{-1}	0.84	0.26	1.06	2.21×10^{-1}	0.95
7p15.3													
rs4487645a	21938240	C/A	0.65	1.38	3.33×10^{-15}	0.70	1.23	7.47×10^{-4}	0.99	0.89	1.37	8.30 × 10 ⁻⁵	0.99
rs12540021 ^b	21945563	G/A				0.75	1.24	6.30×10^{-4}		0.89	1.43	2.27×10^{-5}	
17p11.2							=				_		
rs4273077ª	16849139	G/A	0.11	1.26	1.41×10^{-7}	0.12	1.37	2.46×10^{-4}	0.83	0.14	1.17	1.60 × 10 ⁻²	0.97
rs34562254 ^b	16842991	A/G				0.11	1.45	2.39×10^{-5}		0.13	1.25	1.33×10^{-3}	
22q13.1													
rs877529a	39542292	A/G	0.44	1.23	2.29×10^{-16}	0.45	1.21	4.31×10^{-4}	0.97	0.48	1.11	1.47 × 10 ⁻²	0.99
rs139425b	39559742	C/G				0.46	1.21	4.43×10^{-4}		0.71	1.21	5.54×10^{-4}	

Genome-Wide Association in African Americans

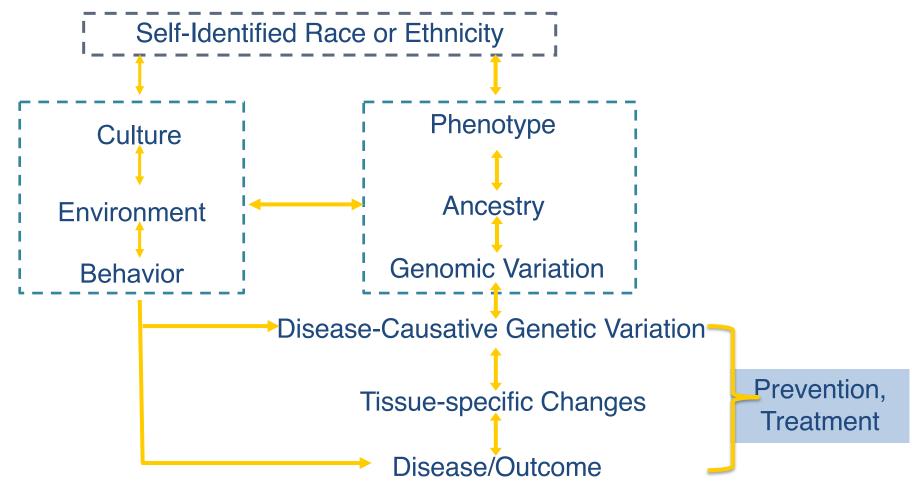
Meta-analysis of 2 GWAS of MM in 1,813 Cases and 8,871 Controls

- No genome-wide significant associations
- Novel locus at 2p24.1-23.1 in AA (from admixture mapping)
- Of 23 known EA risk variants:
 - 20 directionaly consistency
 - 9 replicated at *P* < .05

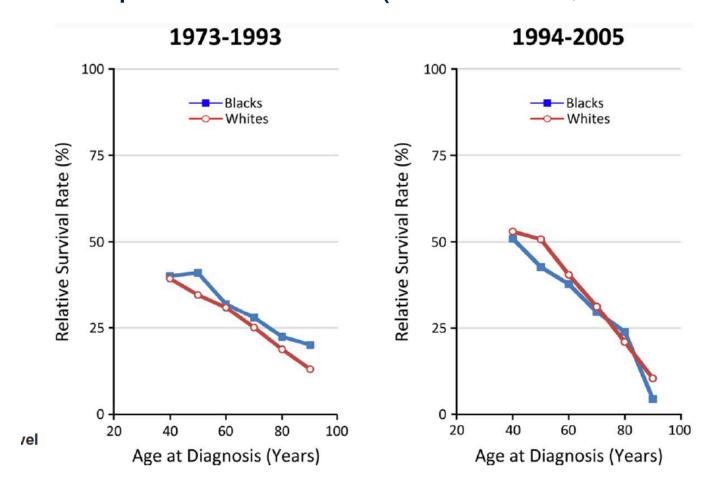

Cytogenetic Abnormalities by Race

Cytogenetic abnormalities			Black			White		
		Total	With abnomality	%	Total	With abnomality	%	
t(11;14)								
< 60 years of age		151	8	5.3%	165	31	18.8%	< 0.001
60+ years of age		141	11	7.8%	307	52	16.9%	
t(4;14)								
< 60 years of age	*	151	7	4.6%	165	19	11.5%	0.04
60+ years of age		141	9	6.4%	307	28	9.1%	
Monosomy 13/del 13q								
< 60 years of age	**	151	46	30.5%	165	73	44.2%	< 0.001
60+ years of age		141	39	27.7%	307	150	48.9%	(0.00)
Monosomy 17/del17p								
< 60 years of age	***	151	15	9.9%	165	23	13.9%	0.027
60+ years of age		141	8	5.7%	307	38	12.4%	0.027
None of the studied abn	ormalities							
< 60 years of age		151	95	62.9%	165	57	34.5%	< 0.001
60+ years of age		141	90	63.8%	307	106	34.5%	< 0.001

Associated with *adverse prognosis, **earlier disease onset, ***disease progression

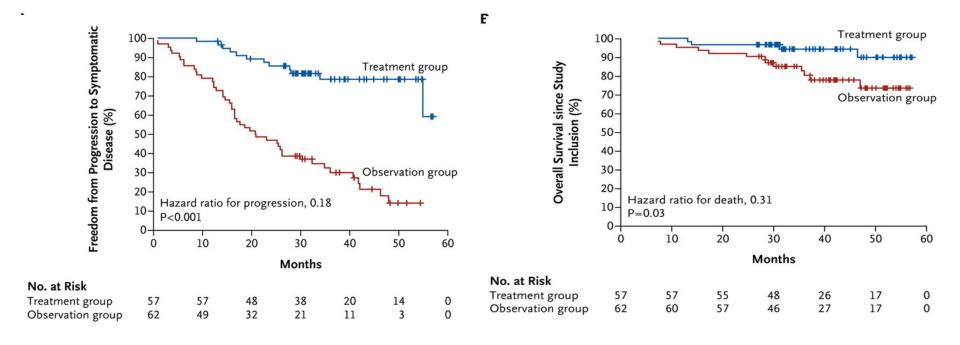

Tumor Mutations by Race

Percent Alterations

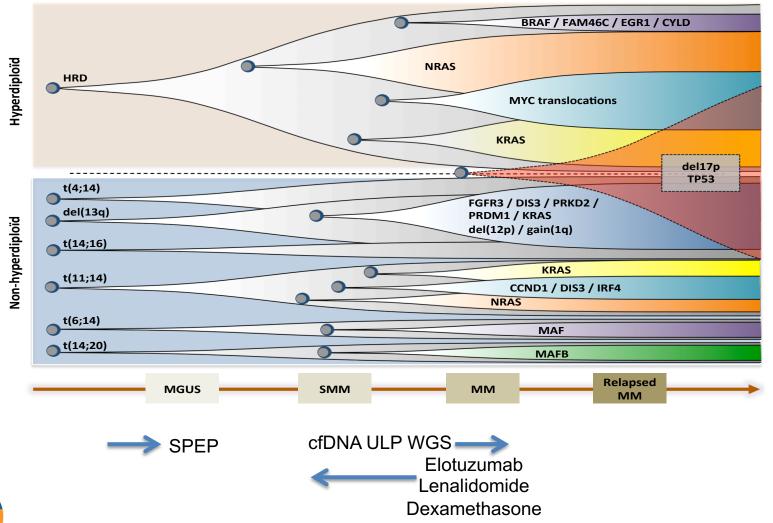

Disparities Framework

Adapted from: Rebbeck and Sankar CEBP 2005, Rebbeck et al. JCO 2006

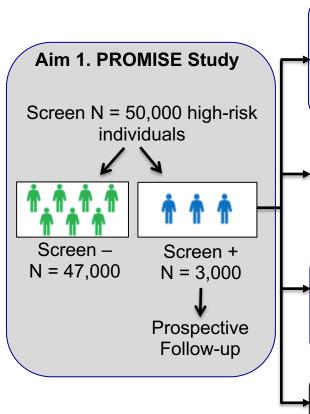
MM-Specific Survival (1973-2005, SEER 9)



After introduction of ASCT and IMiDs (1990s), magnitude of survival improvement among Blacks was less than 50% of that in Whites


Early Intervention May Benefit Pre-MM Patients

Example: RCT of Lenalidomide + Dexamethasone for the Treatment of High Risk SMM


Prevent or Delay Myeloma by Early Therapeutic Intervention of High-Risk Precursor Conditions

Screening and Interception of PROMISE Precursor Myeloma

Aim 2. Genomic Characteristics

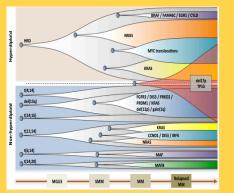
Viktor Adalsteinsson Benjamin Ebert Gaddy Getz

Irene Ghobrial David Liu Jihye Park

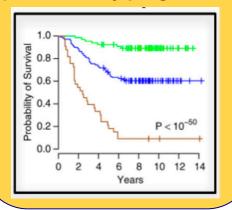
Aim 3. Race/Obesity

Tim Rebbeck Catherine Marinac David Liu

Lorelei Mucci


Aim 4. Microenvironment

Ivan Borrello Irene Ghobrial Jihye Park


Aim 5. Imaging / Therapeutic

Irene Ghobrial Alexandre Detappe Jeremiah Johnson

Develop novel biomarkers & risk stratification tools

Develop new tools to prevent/delay progression

Summary

- The disparity in MM mortality is complex but is in part driven by the increased incidence of MGUS and MM in Blacks as well as disparities in treatment.
- MM survival is equal in Whites and Blacks (or perhaps better in Blacks if treatment is equally applied).
- The genetic, molecular and epidemiological foundation of MGUS and MM risk is not understood, particularly in Blacks.
- Intercepting the progression of MGUS to MM and increasing engagement with Black communities in clinical research may reduce the Black-White disparity.

Acknowledgements

Getz, Gad

Adalsteinsson, Viktor

Ghobrial, Irene M

Hamilton, Courtney

Warren, Michael

Watson, Donald

Higgins, Allison

Hadfield, Andrea

Perilla-Glen, Adriana

Ebert, Benjamin

Park, Jihye

Soiffer, Jennifer

Marinac, Catherine

Detappe, Alexandre

JOHNS HOPKINS

MAYO CLINIC Birmann, Brenda

Mucci, Lorelei

Borello, Ivan

Fronseca, Rafael

Johnson, Jeramiah

Myeloma Crowd Foundation
Ohio Commission on Minority Health

Ahlstrom, Jenny

Boyce, Cheryl

SU2C-AACR-DT28-18