

Genetic Testing in Diverse Populations in South America

Rodrigo Guindalini, MD, PhD

Oncologia D'or

Faculdade de Medicina da USP

Disclosure

 Speaker and teacher for AstraZeneca, MSD, Roche, Bayer, and BMS

Topics

- Latin America (LA) genetic melting-pot
- Genetic counseling in LA
- HBOCS => BRCA1/2 LA
 - BRCA1/2 Brazil
- HBOCS => other genes LA
 - Other genes Brazil
 - TP53 R337H

History of immigration to Latin America

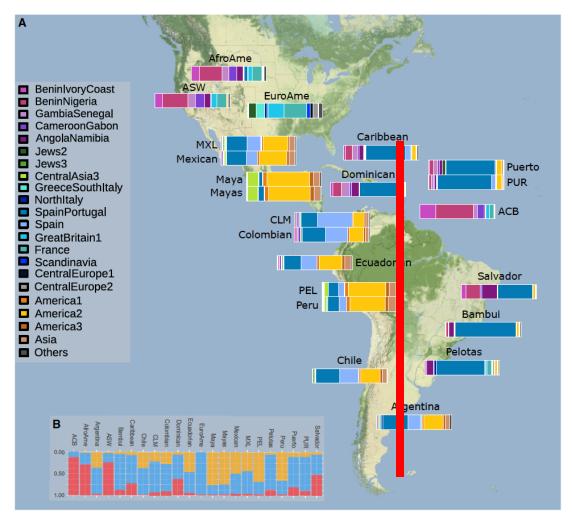
Americas are characterised by exceptionally high genetic diversity.

This has been shaped by historical migrations, such as European Colonialism, the Atlantic Slave Trade and more recent waves of economic migration.

These movements of people have resulted in a mosaic of genetic fragments of different ancestry interspersed in present-day American genomes.

Colonization of the Americas (1750)

Spanish vs Portuguese Empires


Trans-Atlantic Slave Trade – 1500-1866

Highly Complex Ancestral Composition of American Populations

Global Estimate of Trained Genetic Counselors (2017)

Central and South America

"Genetic counseling is not yet recognized as an independent profession in Central and South America, but instead is considered a medical competency provided by physicians, mostly geneticists and other specialty physicians (primarily in oncology)."

BRCA1 and BRCA2

The prevalence and spectrum of germline mutations in BRCA1 and BRCA2 have been reported in single populations, with the majority of reports focused on Caucasians in Europe and North America.

The scope of BRCA1 and BRCA2 mutations in Latin American countries.

- Countries with BRCA1/2 studies
- Countries with BRCA1/2 and other susceptibility mutations studies
- Countries with other susceptibility mutations studies
- Countries without BRCA1/2 and other susceptibility mutations studies

BRCA1/2 mutation prevalence in selected countries in Latin America

Country	Cohort selecting criteria	BRCA prevalence
Argentina ^{68,69}	Personal or FH of BC/OC	19.04-28.3%
	BC/OC in ≤ 40 y); FH; or AJ ancestry	
Bahamas ^{20,21}	BC	23%
	Unaffected women with FH of BC/OC	2.8%
Brazil ⁷⁰⁻⁷⁵	BC unselected cases	2.3%
	FH of BC/OC	3.4%
	BC with FH	13%
	HBOC criteria	2.8-26%
	OC unselected	35.5%
Chile ⁷⁶⁻⁷⁹	BC/OC with FH	7.1-20.4%
Colombia ^{29,30,45}	BC patients	1.2%
	BC/OC families	24.5%
	OC patients	15.6%
Costa Rica ²²	BC with FH	4.5%
Cuba ²³	BC patients	2.6%
Mexico ^{43,46,80-82}	BC/OC unselected cases	4.3-28%
	Early BC	6%
	TNBC	23%
Peru ⁴⁴	Unselected cohort	5%
Puerto Rico ²⁴	BC and unaffected individuals with FH	47.8%
Uruguay ²⁵	BC with FH	17%
Venezuela ⁸³	BC cases with FH, early onset or bilateral BC	17.2%
US Hispanics ¹⁰	Unselected BC patients	1.2-4.9%

BC: breast cancer; FH: family history; HBOC: hereditary breast and ovarian cancer; OC: ovarian cancer; AJ: Ashkenazi Jewish; TNBC: triple negative breast cancer; y: years.

Common BRCA1 Mutations by Country

The Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA

- 18,435 families with BRCA1 mutations
- 11,351 families with BRCA2 mutations
- 69 centers in 49 countries on 6 continents

Five Most Common Mutations (Number Observed)							
Country	Families	Unique	1	2	3	4	5
		Mutations					
Argentina	89	35	c.68_69del(22)	c.5266dup(12)	c.211A>G(11)	c.181T>G(6)	c.427G>T(3)
Brazil	101	39	c.5266dup(31)	c.3331_3334del(18)	c.135-?_441+?del(4)	c.1687C>T(4)	c.3916_3917del(3)
Colombia	55	2	c.3331_3334del(36)	c.5123C>A(19)			
Mexico	25	15	c.548-?4185+?del(8)	c.68_69del(2)	c.824_825ins10(2)	c.211A>G(2)	c.5030_5033del(1)
Peru	1	1	c.4986+6T>C(1)				
Venezuela	1	1	c.5123C>A(1)				
	Argentina Brazil Colombia	Argentina 89 Brazil 101 Colombia 55 Mexico 25 Peru 1	Mutations Argentina 89 35 Brazil 101 39 Colombia 55 2 Mexico 25 15 Peru 1 1	Mutations Argentina 89 35 c.68_69del(22) Brazil 101 39 c.5266dup(31) Colombia 55 2 c.3331_3334del(36) Mexico 25 15 c.548-?4185+?del(8) Peru 1 1 c.4986+6T>C(1)	Country Families Mutations Unique Mutations 1 2 Argentina 89 35 c.68_69del(22) c.5266dup(12) Brazil 101 39 c.5266dup(31) c.3331_3334del(18) Colombia 55 2 c.3331_3334del(36) c.5123C>A(19) Mexico 25 15 c.548-?4185+?del(8) c.68_69del(2) Peru 1 1 c.4986+6T>C(1)	Country Families Mutations Unique Mutations 1 2 3 Argentina 89 35 c.68_69del(22) c.5266dup(12) c.211A>G(11) Brazil 101 39 c.5266dup(31) c.3331_3334del(18) c.135-?_441+?del(4) Colombia 55 2 c.3331_3334del(36) c.5123C>A(19) Mexico 25 15 c.548-?4185+?del(8) c.68_69del(2) c.824_825ins10(2) Peru 1 1 c.4986+6T>C(1) c.68_69del(2) c.824_825ins10(2)	Country Families Mutations Unique Mutations 1 2 3 4 Argentina 89 35 c.68_69del(22) c.5266dup(12) c.211A>G(11) c.181T>G(6) Brazil 101 39 c.5266dup(31) c.3331_3334del(18) c.135-?_441+?del(4) c.1687C>T(4) Colombia 55 2 c.3331_3334del(36) c.5123C>A(19) Mexico 25 15 c.548-?4185+?del(8) c.68_69del(2) c.824_825ins10(2) c.211A>G(2) Peru 1 1 c.4986+6T>C(1) c.68_69del(2) c.824_825ins10(2) c.211A>G(2)

Total = 272 families

Common BRCA2 Mutations by Country

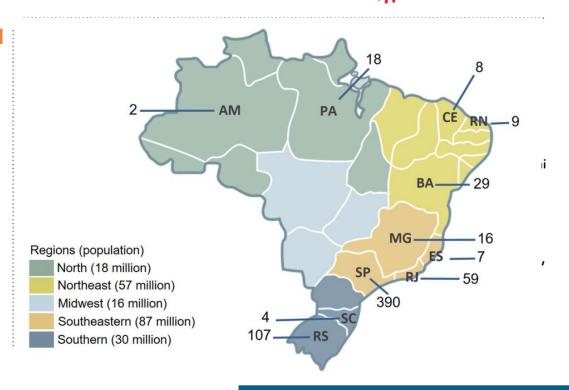
				Five Most Frequently Observed Mutations (Number Observed)				
Continent	Country	Families	Unique Mutations		2	3	4	5
	Argentina	49	21	c.5946del(18)	c.2808_2811del(5)	c.6037A>T(4)	c.9026_9030del(2)	c.5645C>G(2)
	Brazil	47	33	c.2T>G(5)	c.2808_2811del(4)	c.156_157insAlu(4)	c.6405_6409del(3)	c.1138del(2)
South (Control Amorico	Colombia	19	4	c.2808_2811del(15)	c.5851_5854del (2)	c.6275_6276del(1)	c.93G>A(1)	
South/Central America	Costa Rica	1	1	c.9235del(1)				
	Honduras	1	1	c.7558C>T(1)				
	Mexico	6	6	c.3264dup (1)	c.6275_6276del(1)	c.2224C>T(1)	c.5542del (1)	c.6502G>T(1)

Total = 123 families

Ten Most Frequently Observed Mutations

	Mutation Rank	South/Central America
	1	c.3331_3334del (20%)
	2	c.5266dup(16%)
	3	c.68_69del(9%)
	4	c.5123C>A(8%)
DDC 41	5	c.211A>G(5%)
BRCA1	6	c.181T>G(3%)
	7	c.548-?_4183+8?del(3%)
	8	c.1687C>T(2%)
	9	c.135-?_441+?del(2%)
	10	c.5030_5033del (2%)
Families		271
Unique Mutations		75

1	Mutation	South/Central
	Rank	America
	1	c.2808_2811del (11%)
	2	c.5946del(9%)
	3	c.2T>G(2%)
	4	c.156_157insAlu (2%)
BRCA2	5	c.6037A>T(2%)
BKCAZ	6	c.6405_6409del(3)
	7	c.5645C>G(1%)
	8	c.658_659del(1%)
	9	c.7180A>T(1%)
	10	c.5851_5854del (1%)
Families		222
Unique Mutations		58

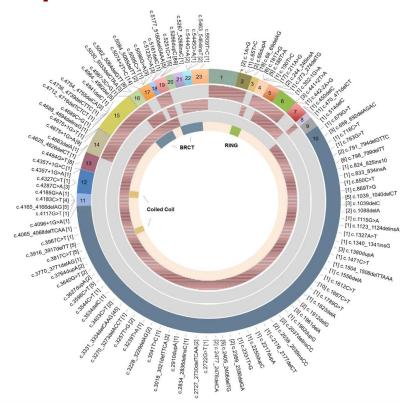


SCIENTIFIC REPORTS

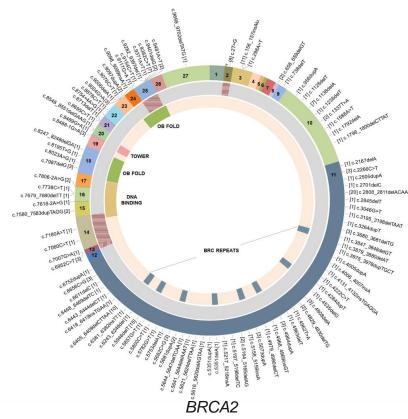
OPEN

Received: 7 February 2018 Accepted: 23 May 2018

Published online: 15 June 2018



649 probands with (likely) pathogenic variants
28 public and private health care centers
distributed across 11 Brazilian States

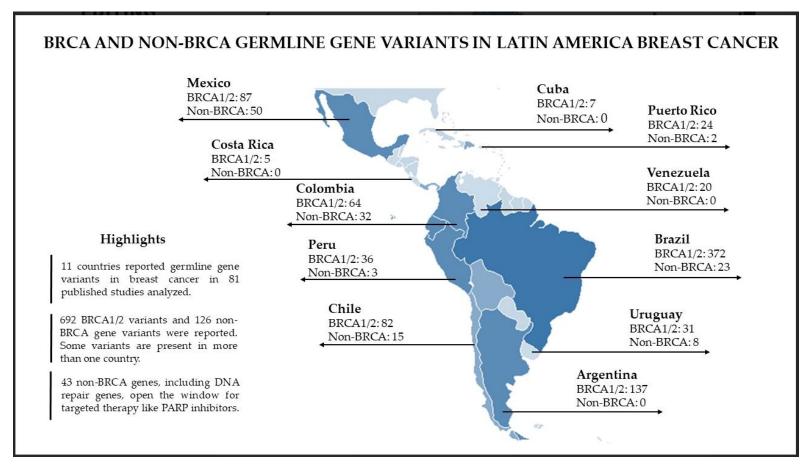

Circos plot showing the distribution of all reported *BRCA1* and *BRCA2* mutations.

BRCA1
126 distinct mutations
441 unrelated individuals.

103 distinct mutations 208 unrelated individuals.

Most frequent reported mutations BRCA1 BRCA2

Mutations identified in three or more probands (N = 33; 73.4%), N and (%)					
c.5266dupC	89	(20.2)			
c.3331_3334delCAAG	45	(10.2)			
c.68_69delAG	19	(4.3)			
c.211A>G	17	(3.9)			
c.5074 + 2T>C	14	(3.2)			
c.470_471delCT	11	(2.5)			
c.1687C>T	10	(2.3)			
c.4675+1G>A	9	(2.0)			
c.4484G>T	8	(1.8)			
c.181T>G	6	(1.4)			
c.798_799delTT	6	(1.4)			
c.5062_5064delGTT	6	(1.4)			


Mutations identified in three or more probands (N = 18; 53.4%), N and (%)						
c.2808_2811delACAA	20	(9.6)				
c.5946delT	15	(7.2)				
c.156_157insAlu	11	(5.3)				
c.6405_6409delCTTAA	10	(4.8)				
c.2T>G	8	(3.8)				
c.1138delA	7	(3.4)				
c.9382C>T	7	(3.4)				
c.2266C>T	3	(1.4)				
c.3680_3681delTG	3	(1.4)				
c.4808delA	3	(1.4)				
c.4964dupA	3	(1.4)				
c.5073dupA	3	(1.4)				

National Cancer Institute

BRCA and non-BRCA genes papers in Latin America

BRCA and non-BRCA genes papers in Latin America

	Country	Total Retrieved Papers ¹	Germline Data ²	BRCA1/2 Papers	Non-BRCA Papers	Total Papers	References
1	Brazil	3290	~	13	19	32	[34-65]
2	Chile	455	✓	7	7	14	[66–79]
3	Mexico	2014	✓	8	4	12	[80-91]
4	Colombia	274	✓	5	1	6	[92–97]
5	Argentina	893	✓	4		4	[98–101]
6	Peru	161	✓	2	1	3	[102–104]
7	Puerto Rico	253	✓	2	1	3	[105–107]
8	Uruguay	126	✓	3		3	[108–110]
9	Costa Rica	56	✓	2		2	[111,112]
10	Cuba	142	✓	1		1	[113]
11	Venezuela	76	'	1		1	[114]

Detection of inherited mutations in Brazilian breast cancer patients using multi-gene panel testing

- Nationwide sample of 1662 Brazilian patients with breast cancer referred for hereditary cancer panel testing at a single clinical diagnostic laboratory from 2015 through 2017
- NGS panels with 21–39 cancer susceptibility genes

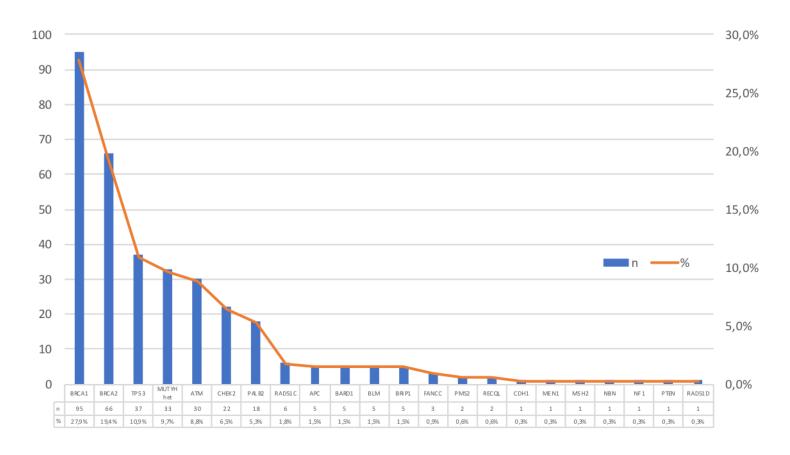
APC, ATM, BARD1, BLM, BRCA1, BRCA2, BRIP1, CDH1, CDK4, CDKN2A, CHEK2, EGFR, EPCAM, FANCC, MEN1, MET, MLH1, MSH2, MSH6, MUTYH, NBN, NF1, NF2, PALB2, PIK3CA, PMS2, POLD1, POLE, PTEN, RAD51C, RAD51D, RB1, RECQL, RET, STK11, TP53, WT1

Detection of inherited mutations in Brazilian breast cancer patients using multi-gene panel testing

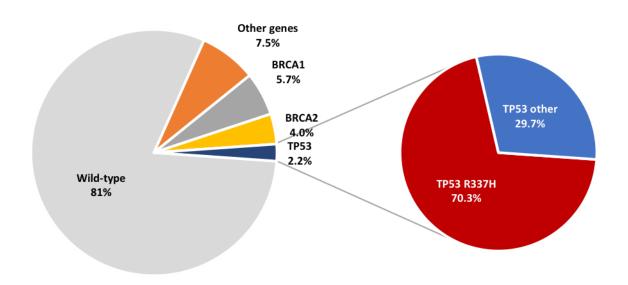
Results

 In total, 323 (20%) participants carried germline pathogenic mutations

161 (10%) in *BRCA1/*2


162 (9%) in other cancer predisposition genes

A total of 766 individuals had 1 or more VUS (46%)

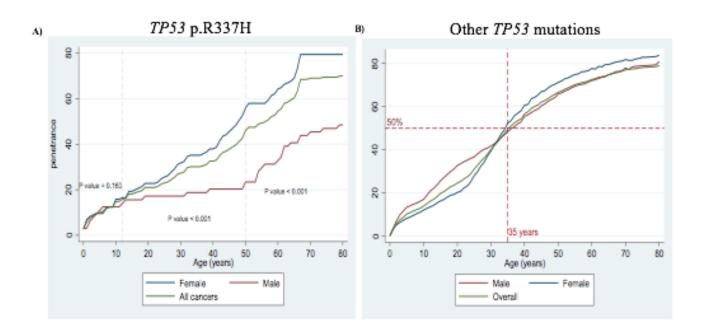

Mutation spectrum of pathogenic and likely pathogenic variants

Contribution of TP53 mutation in Brazilian breast cancer patients (n = 1,662)

Most Brazilian patients with TP53 germline mutation have c.1010G>A (p.Arg337His)

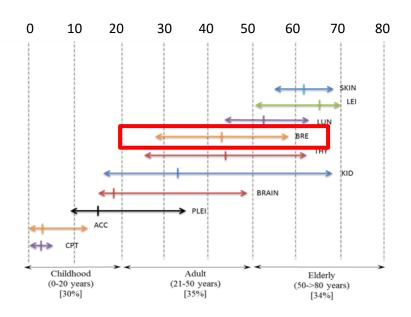
Available online at www.sciencedirect.com

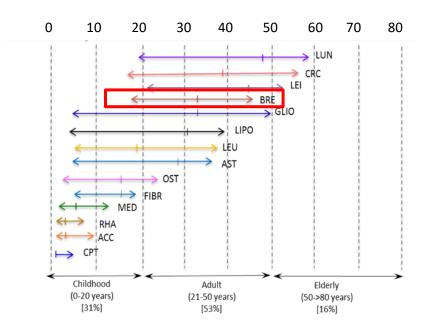
Cancer Letters 245 (2007) 96-102


The *TP53* mutation, R337H, is associated with Li-Fraumeni and Li-Fraumeni-like syndromes in Brazilian families

Maria Isabel Waddington Achatz ^{a,b}, Magali Olivier ^c, Florence Le Calvez ^c,
Ghyslaine Martel-Planche ^c, Ademar Lopes ^d, Benedito Mauro Rossi ^d,
Patricia Ashton-Prolla ^{e,f}, Roberto Giugliani ^{e,f}, Edenir Inez Palmero ^f, Fernando
Regla Vargas ^g, José Claudio Casali Da Rocha ^b, Andre Luiz Vettore ^a, Pierre Hainaut ^{c,*}

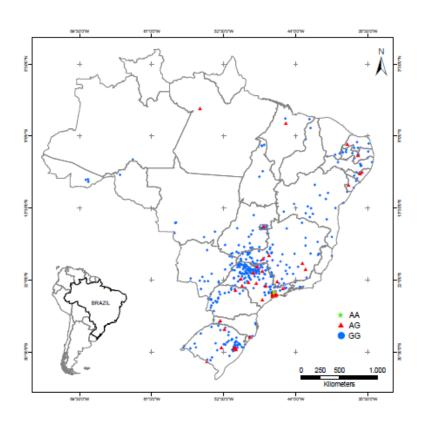
Lifetime cancer risk


- The overall penetrance in p.R337H carriers was 27% at 30 years, 55% at 60 years.
- Cancer risk was comparable in the two groups before age 12 years.
- Lifetime penetrance was significantly higher in females (79%) than in males (48%) in p.R337H carriers
- Carriers of p.R337H mutation had a better overall survival rate compared other TP53 mutations carriers and to non-mutation.



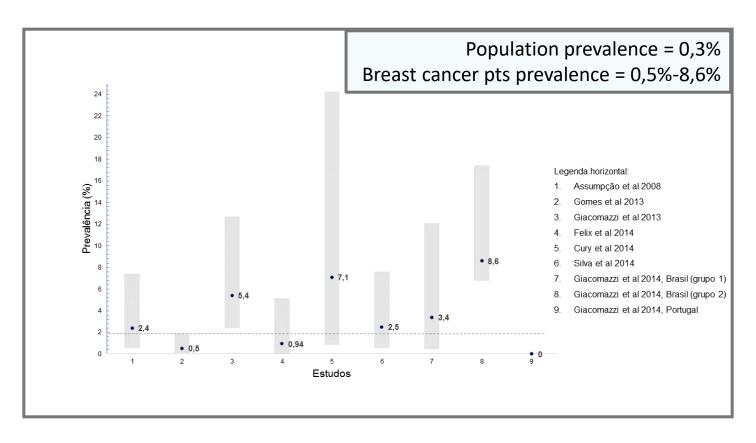
Lifetime cancer risk

TP53 R337H Carriers BrCa 38-68 years


Other *TP53* mutation carriers BrCa 18-45 years

TP53 c.1010G>A (p.Arg337His) & breast cancer

815 breast cancer pts


Age (years)	N	N(%) carriers
≤ 45	403	49 (12.1)
≥ 55	412	21 (5.1)
Total	815	70 (8.6)

* 20% of breast cancer women ≤30yo were TP53 mutation carriers.

Prevalence studies of TP53 p. (Arg337His) in breast cancer patients

Should we test all Brazilian breast cancer patients for *TP53* p.(Arg337His)?

Germline TP53 mutation, general population	1:3000
Germline BRCA1/BRCA2 mutation, general population	1:600
Germline TP53 R337H mutation, general population in South Brazil	1:300

Germline BRCA1/BRCA2 mutation, Ashkenazi jews 1:50

Germline *TP53* R337H mutation in Brazilian BC affected women 1:200 – 1:12

R337H BC affected women in Porto Alegre = 1:43

Li-Fraumeni syndrome

Adults

General assessment

- Complete physical examination every 6 months
- Prompt assessment with primary care physician for any medical concerns

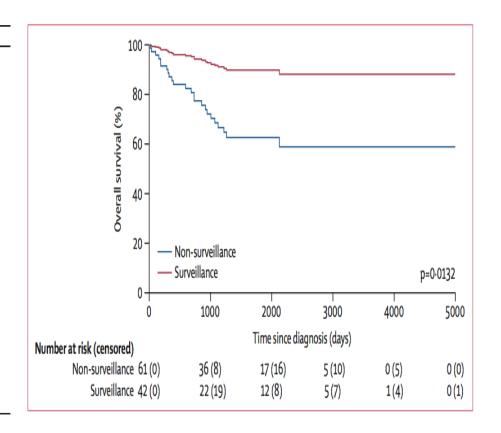
Breast cancer

- Breast awareness (age 18 years onward)
- Clinical breast examination twice a year (age 20 years onward)
- Annual breast MRI screening^c (ages 20–75)
- · Consider risk-reducing bilateral mastectomy

Brain tumor (age 18 years onward)

 Annual brain MRI (first MRI with contrast; thereafter without contrast if previous MRI normal)

Soft tissue and bone sarcoma (age 18 years onward)


- Annual WBMRI^c
- US of abdomen and pelvis every 12 months

Gastrointestinal cancer (age 25 years onward)

• Upper endoscopy and colonoscopy every 2-5 years

Melanoma (age 18 years onward)

· Annual dermatologic examination

Facts

 The inhabitants of Latin America represent the most genetically admixed population in the world

 There is a great need to expand hereditary cancer testing and counseling

Barriers to adequate diagnosis and management of hereditary cancer

Access Barriers	Education Barriers	Quality Assurance Barriers
Lack of a structured referral network in both public and private health care systems	Limited public awareness of genetic risk and of the benefits of GCRA	Lack of regulatory guidelines governing quality control of laboratories and genetic tests
Insufficient number of trained professionals who are able to recognize and provide genetic counseling to patients with a higher cancer risk	Incomplete/incorrect counseling provided by professionals with limited knowledge in the field	Lack of continued assessment of the quality of the clinical services provided in cancer genetics
Absence of genetic testing in the public system and limited access for coverage in the private setting ^a	Limited knowledge of HBOC syndrome and tests among health care professionals at all levels of care	Lack of adequate research budget for epidemiologic studies to delineate hereditary cancer in the country
Limited availability to genetic counseling in both public and private systems	Reluctance of at-risk patients and family members to seek genetic testing and counseling	Lack of funding to develop innovative solutions to overcome local barriers
High cost of genetic tests	Cultural and religious barriers	
Lack of inclusion of GCRA and surveillance of patients in the national cancer policy	Patient and family fears and misconceptions	

Abbreviations: GCRA, genetic cancer risk assessment; HBOC, hereditary breast and ovarian cancer.

^aPatients must fulfill Agencia Nacional de Saude criteria, including the need for a prescription from a board-certified clinical geneticist to qualify for reimbursement.

How to overcome these barriers

- Establishment of nationwide genetic health care services
 - network of reference centers in both public and private health care systems
- Regulatory agencies should prioritize the incorporation of policies related to hereditary cancer
 - continuing professional education and periodic recertification
- Development of training program for health professionals
- Streamlined approachs should be implemented
- Government, medical societies, health care professionals, and patient organizations should support education programs to promote public awareness
- Politicians should be encouraged to pass laws protecting individuals against genetic discrimination

http://geth.org.br/home/

Latin America
Study Group on Hereditary Tumors
Inc. 2003

www.geth.org.br

Thank You

Contact

- rodrigoscg@gmail.com
- m www.linkedin.com/in/rguindalini